Spanning Trees with Bounded Maximum Degrees of Graphs on Surfaces

نویسنده

  • Kenta Ozeki
چکیده

For a spanning tree T of a graph G, we define the total excess te(T, k) of T from k as te(T, k) := ∑ v∈V (T )max{dT (v)− k, 0}, where dT (v) is the degree of a vertex v in T . In this paper, we show the following; if G is a 3-connected graph on a surface with Euler characteristic χ < 0, then G has a spanning ⌈8−2χ 3 ⌉ -tree T with te(T, 3) ≤ −2χ − 1. We also show an application of this theorem to finding “light” connected subgraphs in a 3-connected graph on a surface.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting the number of spanning trees of graphs

A spanning tree of graph G is a spanning subgraph of G that is a tree. In this paper, we focus our attention on (n,m) graphs, where m = n, n + 1, n + 2, n+3 and n + 4. We also determine some coefficients of the Laplacian characteristic polynomial of fullerene graphs.

متن کامل

Homeomorphically Irreducible Spanning Trees, Halin Graphs, and Long Cycles in 3-connected Graphs with Bounded Maximum Degrees

A tree T with no vertex of degree 2 is called a homeomorphically irreducible tree (HIT) and if T is spanning in a graph, then T is called a homeomorphically irreducible spanning tree (HIST). Albertson, Berman, Hutchinson and Thomassen asked if every triangulation of at least 4 vertices has a HIST and if every connected graph with each edge in at least two triangles contains a HIST. These two qu...

متن کامل

Large Bounded Degree Trees in Expanding Graphs

A remarkable result of Friedman and Pippenger [4] gives a sufficient condition on the expansion properties of a graph to contain all small trees with bounded maximum degree. Haxell [5] showed that under slightly stronger assumptions on the expansion rate, their technique allows one to find arbitrarily large trees with bounded maximum degree. Using a slightly weaker version of Haxell’s result we...

متن کامل

NUMBER OF SPANNING TREES FOR DIFFERENT PRODUCT GRAPHS

In this paper simple formulae are derived for calculating the number of spanning trees of different product graphs. The products considered in here consists of Cartesian, strong Cartesian, direct, Lexicographic and double graph. For this purpose, the Laplacian matrices of these product graphs are used. Form some of these products simple formulae are derived and whenever direct formulation was n...

متن کامل

On relation between the Kirchhoff index and number of spanning trees of graph

Let $G=(V,E)$, $V={1,2,ldots,n}$, $E={e_1,e_2,ldots,e_m}$,be a simple connected graph, with sequence of vertex degrees$Delta =d_1geq d_2geqcdotsgeq d_n=delta >0$ and Laplacian eigenvalues$mu_1geq mu_2geqcdotsgeqmu_{n-1}>mu_n=0$. Denote by $Kf(G)=nsum_{i=1}^{n-1}frac{1}{mu_i}$ and $t=t(G)=frac 1n prod_{i=1}^{n-1} mu_i$ the Kirchhoff index and number of spanning tree...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Discrete Math.

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2013